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Abstract

A lack of plant-specific instruments has hampered some empirical studies using
economic microdata.  I propose that market segmentation can be exploited to identify appropriate
instruments containing across-plant variation.  I outline an intuitive principle for identifying such
instruments, and I explore their effectiveness with a prototype study: production function/returns
to scale estimation.  The instruments, which can be plausibly used in a large variety of empirical
work, are also shown to be surprisingly flexible in applicability across industries.  These factors
imply that instrumental variables identified through market segmentation offer many
opportunities for expanded microdata research activity.

This is preliminary work; comments are welcome.  Please contact author before citing.

The research in this paper was conducted while the author was a research associate at the Center
for Economic Studies, U.S. Bureau of the Census.  Research results and conclusions expressed
are those of the author and do not necessarily indicate concurrence by the Bureau of the Census
or the Center for Economic Studies.
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Using Market Segmentation to Obtain Plant-Specific Instruments:
A Practical Application

I. The Market Segmentation Principle of Instrument Identification

The recent proliferation of available economic microdata has greatly benefitted nearly

every field in economics.  Questions once left only to theory are now quantitatively testable. 

Researchers are gaining new insights into long-standing puzzles.  The aggregate dynamics of

many economic variables have been decomposed into their fundamental components. 

Establishment-level data has doubtlessly offered economists excellent new opportunities to learn. 

Unfortunately, the increased availability of such data has not been accompanied by a similar

increase of suitable plant-specific instrument series.  Instruments are crucial to many empirical

studies because they allow econometricians to obtain consistent estimators in the presence of

simultaneity/endogeneity problems, and economic data is rife with endogenously determined

variables.  Simply measuring economic data at a finer level does not rid it of endogeneity,

because individual economic actors still base many actions on influences that are either unknown

or unmeasured.  Furthermore, it is often impossible to empirically model these effects.  The use

of instrumental variables (IV) estimation is warranted in such cases.  Because of the lack of

plant-specific instruments, however, microdata researchers encountering endogeneity to this

point have had to compromise by employing techniques that, while perhaps practical, are less

theoretically appropriate than instrumental variables estimation.

I contend that market segmentation—geographic segmentation here specifically—can be

exploited to identify establishment-level instrument series.  The instruments which I propose

have a wide array of potential empirical applications that span several economic fields. 

Examples include using plant data to estimate labor supply curves, output supply curves, factor

substitution elasticities, returns to scale, and total factor productivity.  Besides flexibility in the

nature of empirical questions which the instruments it identifies can be used to address, the

market segmentation principle has two additional important characteristics.  First, its

intuitiveness and generality allow instruments to be identified for plants in a host of industries. 

Second, because the specific form of market segmentation varies from industry to industry, the

researcher can be reasonably assured that identified instruments are especially relevant to the
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industry of interest.  These combined factors imply that instruments identified through market

segmentation can significantly expand the potential scope of empirical microdata studies.  I test

their suitability for one such application here: industry production function/returns to scale

estimation.

Generally speaking, the suitability of a variable (or alternatively, a set of variables) to

instrument for endogenous explanatory variables depends on two factors.  The first requirement

is that the instrument be correlated with the endogenous variables.  Higher degrees of

comovement improve instrument performance.  The second is exogeneity; the instrument should

have as little correlation with the residual term as possible, since the inconsistency and small-

sample bias of an IV estimator go to zero as the instrument and the residual become orthogonal. 

If plant-level data are being used for estimation, there is a third criterion: a suitable instrument

must exhibit some variation across plants to gain any additional identifying power from the plant

data.  Aggregate or even industry-wide series will not suffice.  It is this third criterion which has

caused many researchers who work with plant-level data to forsake the search for instruments as

too difficult, if not hopeless.  I believe, however, that careful theoretical consideration of market

structures allows identification of plant-specific instruments that are widely applicable.

The key to identifying such instruments is recognizing how markets are segmented across

the plants of interest.  Market segmentation, for my purposes, refers to any way in which a

seemingly industry- or economy-wide market is actually comprised of a collection of

heterogeneous “local” market units.  (“Local” does not necessarily imply that the market is

segmented geographically, although that is certainly the case for many goods and industries.) 

That is, markets are segmented whenever there is some degree of plant-level separation in the

industry's output or inputs markets.  Recognizing such market heterogeneity allows identification

of instrumental variables that will exhibit across-plant variation when measured along the same

dimension as the segmentation is present.

To clarify the principle, consider a few examples.  If plants in an industry face localized

labor markets—geographically segmented labor markets, in other words—then local real wage

measures are candidate instruments for plants' labor inputs, assuming wage-taking plants.  If

establishments face varying shadow prices of capital because of financial heterogeneity, proxies

of credit-worthiness or liquidity from firm financial data could potentially instrument for plant-
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level investment and/or capital inputs.  In many intermediate goods industries, tight producer-

supplier linkages exist; an upstream plant may ship a significant portion of its output to a very

limited number of downstream buyers.  When this is the case, activity data for the downstream

plant(s) can be used to instrument for inputs in the upstream establishment.  These latter two

examples are cases of non-geographic market segmentation.

These illustrations, and indeed the application of the market segmentation principle in

general, are subject to two important caveats.  First, a researcher must be confident that any

instruments still exhibit the properties of relevance and exogeneity at the establishment level;

across-plant variation alone is not sufficient.  Consider the above example of using local real

wage measures as instruments for labor inputs.  Such data would not be suitable instruments if

plants or firms were believed to have labor-market power; the local wage would no longer be

exogenous to the plant's input decisions.  A second unfortunate reality is that data limitations

often preclude practical implementation of what would be a superb instrument in theory.  We

may not have lists of buyer-supplier linkages in many industries, for instance.

Still, the exploitation of market heterogeneity to identify instruments holds considerable

potential.  The two caveats enumerated above can often be addressed effectively with some effort

on the part of the empirical economist.  For example, the requirement of plant-level instrument

exogeneity requires prudent consideration of theory when selecting instruments.1  If such issues

are successfully accounted for, an we have powerful and flexible establishment-level input

instruments at our disposal.

In the remainder of the paper, I will demonstrate the merits of the market segmentation

method with a practical application.  I choose production function/returns to scale estimation as

the prototype study for my method for several reasons.  First, these estimates are interesting to

many economists in their own right; production functions are ubiquitous in economics, and a

substantial literature exists which explores their implications regarding returns to scale.2  A vast

majority of the returns to scale literature uses either industry or aggregate data.  Extension of this

work to plant data, even if only for select industries, may offer additional insights.  Second, the
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current non-IV methods of production function estimation (some of which I describe below)

suffer from shortcomings that good instruments can overcome.  Third, I can test the breadth of

practical applicability of the method through the choice of the industries in the study.  That is, by

including industries with varying degrees of market segmentation, I can explore the question of

the extent of heterogeneity necessary to attain instrument relevance at the establishment level.

II. Production Function/Returns to Scale Estimation: Problems and Proposed
Solutions

Production function estimation has a long history in empirical economics, beginning over

70 years ago with Cobb and Douglas (1928).  Since then, the quantitative relationship between

outputs and inputs has received substantial attention in the agricultural, industrial organization,

and macroeconomic literatures.  The availability of plant-level databases has sparked new

interest in using microdata to obtain production function and returns to scale estimates.  This has,

in turn, generated a need for accurate estimation procedures when plant-specific data are used.

A naive researcher may estimate production functions simply by regressing outputs on

some functional form of inputs using ordinary least squares (OLS) methods.  However, as

Marschak and Andrews (1944) first pointed out, simultaneity of productivity and inputs cause

such methods to provide inconsistent estimators of production function parameters.  Their

argument has become more widely accepted in the years since, as evidenced by work such as

Hoch (1962), Mundlak and Hoch (1965), and Mundlak (1996), among others.  To see the nature

of the OLS estimation difficulty, consider a simple Cobb-Douglas technology specification3:

where Yt is gross plant output at time t, and Lt, Kt, Et, and Mt are the plant’s labor, capital, energy,

and material inputs, respectively.  At is a coefficient that captures factor-neutral productivity in

the plant’s technology.  Taking logarithms and using lower-case letters to denote logged values

yields
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In (2), I have decomposed logged productivity (the natural logarithm of At) into three separate

terms.  The first, (0, is the mean log productivity level over the observations.  The other two

terms, Tt and 0t, are mean-zero deviations from this constant, the difference between them being

that Tt is observable to the plant while 0t is not.  The sum of (0 and Tt can be interpreted as

productivity privately observed by the firm in period t.  The value 0t can be thought of either as

the plant’s measurement error of its own productivity or as an unforecastable innovation to

productivity.  Thus Tt is a state variable in the plant’s decision functions, but 0t is not.  Of

course, to the econometrician, productivity is not observable; while (0 can be estimated, Tt and 0t

must be incorporated into the error term of any estimable specification of (2).

The incorporation of unobserved productivity Tt into the error term leads to biases in

OLS estimates.  Because changes in productivity alter the marginal product of inputs, the demand

function for adjustable inputs (such as labor, energy, and materials in the production function

above) will include the contemporaneous realization of productivity Tt; i.e., lt = lt (@,Tt), and

likewise for et and mt.  Hence the error term will be correlated with labor, energy, and materials

inputs, causing the estimates of (l, (e, and (m to be biased.  Furthermore, if Tt is serially

correlated, today's productivity conveys information about future productivity, and the demand

function for quasi-fixed inputs such as capital also includes Tt because plants adjust their input

stocks to anticipated changes in their marginal productivities.  This similarly leads to biased

estimates of (k.

Responses in the empirical literature to the problem of input endogeneity have varied. 

One strategy used with establishment-level panel data is estimation using establishment fixed

effects.4  The intuition of this approach is that any permanent differences in average

productivities across plants can be removed by allowing the estimated constant to vary between

them.  In effect, it makes the presumption that Tt is constant through time for any given

establishment, although its level varies cross sectionally.  As seen in (2), if T is indeed constant,

there is no correlation between the error term and inputs (recall that the error term 0t is the

innovation to productivity not incorporated by the plant into its factor demand decisions). 

Unfortunately, while the fixed-effects strategy does eliminate the inputs-productivity correlation



5 For examples of its application, see Griliches and Mairesse (1995), Aw, Chen, and Roberts (1997),
Pavcnik (1998), and Levinsohn and Petrin (1999).

6 Olley and Pakes also make a similar assumption about the character of a plant's produce/liquidate
decision which I contend can also lead to biases.  This point is tangential to the discussion here, however, so I will
not address it further.  An interested reader should see Syverson (1999).
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in the cross section, it requires the unlikely assumption that there is no intertemporal within-plant

productivity movement, leaving the door open to bias through correlation across time periods.

In a recent paper, Olley and Pakes (1996) take a different angle toward eliminating

simultaneity biases.  They advocate including a proxy to control explicitly for productivity in

production function specifications.  Their method is a three-step algorithm that uses observed

plant variables and an assortment of standard techniques to create productivity proxies.  It has in

a very short time since become a popular method for estimating production functions with plant

level data because of its clever treatment of endogeneity and its relative ease of implementation.5 

The thrust of their procedure is the inversion of the plant-level investment function to back out a

productivity proxy polynomial that contains only plant observables.  They demonstrate such

maneuvering is mathematically consistent if plant investment is a monotonically increasing

function of plant productivity, and if productivity is the only unobserved establishment-specific

variable in the investment function.  The latter is an especially strong assumption, and I argue in

Syverson (1999) that it does not often hold in practice.  I demonstrate that when other plant-

specific state variables do affect investment, the Olley-Pakes (O-P) algorithm provides biased

estimates of production function parameters.6

One particular case where the Olley-Pakes method is liable, and where the use of

appropriate instrumental variables would improve the accuracy of estimation, is when output

markets are geographically segmented; i.e., when establishments sell a majority of their output to

buyers in their immediate vicinities.  Local markets can yield considerable spatial demand

variation.  As such, plants in locally focused industries are likely to take their idiosyncratic

demand state into account when hiring inputs; demand (or expected demand) is thus an

additional plant-specific variable in the input demand functions of these plants.  I contend such a

case is present in the industries in this study.

Instrumental variables techniques are a preferred alternative when the O-P method is

likely to yield biased estimators.  In practice, however, obtaining good instruments for plant-level
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production data can be a challenging task.  (Indeed, the call for methods such as Olley and Pakes'

algorithm grew out of a perceived lack of quality instruments.)  In the specific case of production

function/returns to scale estimation, good instruments should be correlated with plant-specific

inputs (e.g., employment and capital stock) but uncorrelated with productivity movements.  The

market segmentation principle is well suited to find just such instruments; I apply the method

below.

III. Production Function/Returns to Scale Estimation Using Local Downstream
Activity Measures as Instruments

The specific manufacturers in my prototype study are those plants in SIC industries 2611

(Pulp Mills), 2621 (Paper Mills), 2631 (Paperboard Mills), 3271 (Concrete Block and Brick),

3272 (Concrete Products Except Block and Brick), 3273 (Ready-Mix Concrete), and 3531

(Construction Machinery and Equipment).  These industries were selected in part because all

have a significant amount of their output used by firms in particular downstream sectors, without

any upstream industry's output singularly accounting for a large portion of downstream costs.  In

the case the concrete and construction equipment industries, the downstream output purchaser is

the construction sector.  It is the finance, insurance, and real estate (FIRE) sector for the pulp and

paper industries.  As Shea (1993) argues, these characteristics make measures of construction or

FIRE activity suitable instruments for inputs in these lines of business, at least at the industry

level.  My technique extends these instruments to the plant level by matching local construction

or FIRE data to upstream-industry plants in the same geographic market.  However, while these

industries all fit well into Shea’s framework for instrument selection, they may vary in suitability

for my method.  This is because the identification principle becomes more powerful as the extent

of segmentation increases; in this case, as plants sell larger shares of their output within a

locality.  This heterogeneity is present to different degrees in the industries here.  Careful

examination of the results obtained with my methodology across differentially segmented

industries will shed light on the extent of its practical application.

I clarify the intuition behind selection of local construction and FIRE activity measures as

input instruments for my industries with the following discussion.  Its specifics focus on the

suitability of local construction activity measures as instruments for its corresponding upstream
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8 Looking at 1977 again, concrete and construction equipment output accounted for 6.5% and 10.5% of
new construction costs that year, respectively.

9 The idea of using input-output linkages to identify instruments was proposed by Shea (1993).  His paper
offers a more thorough discussion of how one can identify instruments at the industry level which are both relevant
and exogenous using demand and cost shares.
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industries, but the logic extends analogously to the linking of the pulp and paper industries and

local FIRE activity data.

Construction is relevant to the productive scale (i.e., the input levels) of concrete and

construction equipment plants because large portions of the output of these industries are used in

final construction output.  So construction activity and inputs in these plants are very likely to

move together.7   Furthermore, because construction projects generally require output from a

wide array of industries, the percentage of total costs of final construction firms attributed to

ready-mix concrete or equipment alone is likely to be relatively small.8  This small cost share

makes it less likely that any productivity advances in the concrete or construction equipment

industries—which lower the relative cost of concrete or equipment—will alter the amount of

construction activity, because idiosyncratic price drops in a single intermediate input will not

greatly lower the total costs faced by final construction firms.  Therefore, productivity

movements in these industries are nearly (if not entirely) uncorrelated with final construction

activity, satisfying the exogeneity criterion.9

It is with regard to the requirement that the instrument should exhibit interplant variation

where the suitability of local construction activity as an instrument may differ between plants in

the concrete and construction equipment industries.  Why is this so?  Because the degree to

which plants incorporate their local output demand into production input decisions is based on

the extent of geographic market segmentation in their industry's output market.  More

establishment-specific identification is afforded by using local (at the county level, say)

construction activity instruments for plant inputs in locally focused industries than in industries

with plants selling output across a larger area.  For example, the high weight-to-value ratio of

concrete makes it reasonable to assume that concrete plants sell the vast majority of their output

locally, so local construction activity measures (which presumably reflect local demand for

concrete) should be suitable plant-specific instruments.  On the other hand, construction
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equipment is much more readily transportable, so there is less connection between an equipment

plant's input decisions and construction activity in its local area.

Table 1 presents shipping distance data from the 1977 Commodity Transportation Survey

for my industries.  Such data allows interindustry comparison of the extent of output market

localization, which can be reasonably measured as average shipping radius.  The first column

shows the percentage (by weight) of industry final output shipped less than 100 miles from the

point of manufacture during the survey year.  The second column shows the corresponding

number for output shipped from 100 to 199 miles.  These values are indicative of the degree of

geographic output market segmentation in the industry.  Notice that the concrete industries are

extremely locally focused, while the construction equipment industry ships a substantial

proportion of its output far away from its place of production.

The table implies we can be reasonably confident that construction activity in, for

instance, Lancaster County, Nebraska (containing the city of Lincoln) will influence the input

choices of a concrete plant in Lincoln, but not one in, say, Pima County, Arizona (containing

Tucson).  Conversely, fluctuations in Pima County's construction business will not affect the

Lincoln plant.  Therefore Lancaster (Pima) County construction activity can be used to

instrument for inputs in a Lincoln (Tucson) concrete plant with reasonable assuredness that the

relevance and exogeneity criteria are being met for each plant.  If construction activity measures

are spatially disaggregated enough, local activity measures will capture substantial interplant

variance in the instrument series.

The table also indicates that I include regionally or nationally focused industries in the

study.  This facilitates exploration of the useful limits of geographic market heterogeneity as an

instrument identifier.  Just as the identification principle becomes more practical as markets

become more segmented, it becomes less powerful as heterogeneity disappears.  We may not be

able to confidently assume that Lancaster County construction activity is very relevant to the

input decisions of a construction equipment manufacturer in Lincoln, for instance.  A more

appropriate instrument choice in this regard might be nationwide construction activity.  However,

with such a measure we would of course be left with no variation between plants in the

instrument.  Including industries with varying degrees of output localization (as indicated by their

shipment patterns) allows me to compare the relevance of local downstream instruments under
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different degrees of segmentation.

IV. Data

Local Construction and FIRE Activity Data

The key to practical implementation of the market segmentation principle is instrument

data which can be pared along the same axis as the market heterogeneity.  In the present case,

that requires data on construction and FIRE activity that can be measured at a geographically

disaggregate level.  Such data does exist.  I use local construction and FIRE sector instruments

derived from the Census Bureau's public-use County Business Patterns (CBP) annual data over

the 1977-1993 period.  The CBP contains summary information on the scale of economic activity

by major industry for every county in the United States.  There are two measures of economic

activity for each surveyed industry: the number of employees during the March 12th pay period

and the annual industry payroll.  Public-use Census data at such a fine geographic resolution is

often full of censored data, but this is a relatively minor obstacle in the case of the FIRE sector

(SICs 60-67), and even less so in the construction sector (SICs 15-17).  This is because the

sectors’ omnipresence and abundance of small firms allow full disclosure of summary statistics

in all but the smallest of counties.  For those counties with exact employment and payroll data

withheld for the sake of confidentiality (roughly 9.5% of the over 50,000 county-year

observations for FIRE, and 1.5% for construction), a total employment range is reported.  In

those cases, I simply use the mean of the range as the imputed employment for the period.  I

impute payroll for these observations by multiplying imputed employment by the corresponding

sector's average per-employee payroll for that year, which is computed using data from full-

disclosure counties.  The impact of using imputed numbers is likely to be even less than their

proportion indicates, as the typically small nondisclosure counties are less likely to contain

sample plants in one of my industries. Real payrolls are constructed for each observation by

dividing the reported nominal annual payroll by the same year’s CPI value.

I estimate returns to scale using both employment and real payroll as plant input

instruments because each measure has its own strengths and weaknesses.  Total employment may

be a more direct measure of construction activity than real annual payroll, for instance. 

However, because CBP data include employment numbers during only one pay period of the
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year, CBP employment numbers are subject to measurement error.  This is especially true in the

construction industries, which have large intrayear fluctuations in employment and are very

sensitive to exogenous factors such as the weather.  Consistent seasonality would not be a

problem; the (probably lower off-season) mid-March employment values would simply be a

constant proportion of full (summer) sector employment in the county, so relative cross-sectional

and intertemporal variations would be preserved, just at a smaller absolute scale.  However, the

construction sector in particular is subject to the fickle nature of the weather and other factors

which can vary greatly across space and time.  This causes the accuracy of mid-March

employment as a measure of activity for the year to change idiosyncratically across counties and

years.  Using real annual payroll as an alternative reduces some of this noise, as this data

measures activity over an entire year rather than trying to obtain an annual value with a small

sample.  Payroll is not without its own problems, however; it confounds the spatial differences in

wages and worker skills with a pure activity measure.  I estimate industry production functions

using both measures for now, keeping in mind these relative differences when interpreting the

results.

I also take advantage of the geographic dimension of the CBP survey to examine how

changing the level of geographic aggregation of the construction or FIRE activity data affects the

relevance of the instruments among industry groups.  I aggregate the instrument data at three

geographic levels.  The finest aggregation is at the county level—as the data are originally

reported.  In this case, downstream construction or FIRE activity in a given county instruments

for inputs at any sample establishments in that county.  County activity is an extremely local

measure, however, even for plants in locally-focused industries.  While many such plants do

likely operate largely within one county, it is also highly probable that a significant fraction sell

their output outside the boundaries of their county.  This is especially true for larger

establishments in multi-county metropolitan areas, and in the Northeast, where counties are

simply smaller in area than their western counterparts.  Multicounty activity measures may be

more appropriate in such instances.  Using broader geographic instrument aggregates would also

allow gauging of their effectiveness across industries with significantly different levels of

localization.  I therefore also instrument using construction activity data aggregated at two

broader levels.  The first, and the smaller of the two geographically speaking, is at the
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Component Economic Area (CEA) level.  The Bureau of Economic Analysis (BEA) creates

CEAs by collecting together counties considered to be substantially intertwined economically

and to share common dynamics.  All counties in the U.S. are placed in a CEA; there are roughly

380 CEAs in the nation.  The third and highest geographic instrument aggregate I use is at the

Economic Area (EA) level.  The BEA combines CEAs which are considered themselves to be

economically interconnected into 172 EAs.  Construction and FIRE sector employment and real

payrolls for these larger geographic divisions are simply the sum of the county-level values for

all counties within the CEA or EA.  I do lose some across-plant variation in the instrument set

when I go to the CEA or EA level, of course.  The loss in identifying power may be a necessary

trade-off in order to gain relevence in those industries with plants that largely operate beyond

their county's borders.

Plant Level Production Data

I take plant output and inputs data from the Census Bureau's Longitudinal Research

Database (LRD).  The LRD is a longitudinally linked database of the establishments polled in the

Annual Survey of Manufactures and the Census of Manufactures.  It contains a wealth of

information on plant production activity.  Importantly here, it also contains the state and county

where the establishment is physically located, so it is possible to match each plant with local

instrument values at all three geographic aggregation levels.  While annual LRD data is available

from 1972 to 1995, my sample period was limited to 1980-92 on the front end because of

availability limitations in the annual CBP instrument data, which is only available for 1977

onward (I require three lags of instrument values for each input observation), and on the back end

because of limitations in external data sets used to merge in capital depreciation ratios,

investment deflators, and the like.

The estimated production function is expressed in terms of gross output.  Depending on

the estimation method, plant inputs enter either separately as explanatory variables, or as a cost-

share-weighted composite (I discuss this further below).  Yearly nominal gross output is the

plant's reported total value of shipments plus an adjustment for changes in inventories of final

goods over the year.  Nominal output is converted to a real value by dividing by an output price

deflator for the plant’s corresponding four-digit industry, taken from the Bartelsman-Becker-
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Gray/NBER Productivity Database.

Plant-level labor inputs are the sum of production worker hours (a reported value in the

LRD) and an imputed value for nonproduction worker hours.  Nonproduction worker hours are

constructed using the method of Davis and Haltiwanger (1991), where the number of

nonproduction workers at the plant (the difference between reported total employment and the

number of production workers) is multiplied by the average annual hours worked by

nonproduction employees within the corresponding two-digit industry and year.  These latter

values are based on Current Population Survey data.

Real investment for each plant is calculated simply by dividing reported equipment and

structures investments (the LRD contains separate capital data for each of the two capital types)

by the respective Bureau of Labor Statistics (BLS) two-digit type-specific capital deflator.

I use a combination of two methods to construct the capital stocks for each plant.  When

data for a given plant is available in consecutive years, capital stocks (again, computed separately

for equipment and structures) are constructed using the perpetual inventory method.  I depreciate

the previous period’s capital stocks using BEA type-specific three-digit depreciation rates, and

then add real investment values to obtain the current period’s capital stocks.  For plant-year

observations not preceded by an observation of the same plant in the previous year (this includes

a plant’s first observation), I compute capital as the establishment’s reported book value capital

stock multiplied by the ratio of book to real values for the entire corresponding three-digit

industry in that year.  The industry-level capital stocks are from published BEA data.  The value

of any reported machinery or building rentals is inflated to a capital stock by dividing by the

BLS's rental cost of capital series for the respective capital type.  Finally, the capital stock used in

production function estimation is constructed by summing the equipment and structures stocks.

Real materials usage is plant materials costs divided by a corresponding four-digit

materials deflator.  Energy input is the sum of electricity and fuel expenditures, deflated using a

four-digit energy cost index.  Each of the industry-specific price deflators used in this process is

taken from the Bartlesman-Becker-Gray Productivity Database.

The input cost shares used to construct the composite input are computed as follows. 

Establishment labor costs are the sum of total salaries, wages, and benefits paid to permanent

workers plus any costs from hiring contract labor.  I compute capital costs as the product of
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establishment capital stocks and the BLS capital rental cost series.  Energy costs are the sum of

electricity and fuel purchases, and materials costs are a separately reported item in the LRD.  I

sum the four to obtain total costs, and calculate shares using this value.

V. Methodology

I obtain returns to scale estimates from two production function specifications.  The first

is a simple logarithmic Cobb-Douglas production form:

where yit is (logged) gross output of establishment i, and lit, kit, eit, and mit are measures of plant

labor, capital, energy, and material inputs, respectively.  The first term is the productivity level

common to all industry plants and time periods.  The second term, *t, is a time-specific constant

which captures any overall industry productivity movements.  The final term is plant-specific

productivity.

  The second specification follows the returns to scale literature and uses a cost-share-

weighted composite input on the right hand side of the specification.  That is, the production

function is expressed as

where

and sj is the plant-level cost share of input j.  Under the assumption of cost minimization, the

estimate of (x is the degree of returns to scale.

The reasons for using two production function specifications arise from limitations in the

alternative estimation methods.  While the latter specification does not impose a functional form

on the production function, the Olley-Pakes algorithm cannot be applied whenever flexible inputs

(such as labor and materials) cannot be separated from quasi-fixed inputs (capital).  Thus it is

necessary to impose some structure when using their algorithm.  I choose the Cobb-Douglas

specification for the sake of simplicity.  On the other hand, while instrumental variables

estimates with market-segmentation instruments can be theoretically applied toward estimation



10 This does not mean that instruments obtained via market segmentation can only be applied to certain
functional forms.  The current restriction results from the fact my instrument set here, downstream demand shifts,
tends to move several inputs simultaneously.  If I could obtain additional instruments which have influence on
specific inputs, such as the local real wage or capital cost measures discussed above, I could add these to the
instrument set and likely gain linearly independent influence across inputs, allowing seperate technology parameter
estimation by input.  Time and data constraints leave me to demonstrate the merits of my method using only
downstream measures in the instrument set for now.  I leave expansion of the set to future work.
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of the Cobb-Douglas specification, there is a practical consideration hampering such efforts.  As

Shea (1997) demonstrates, instruments should not only be relevant to each of the individual

endogenous explanatory variables, they should have linearly independent relevance.  This

implies in this case that downstream activity measures should have an influence on each input

(labor, capital, energy, and materials) that is independent of their influence on the other inputs. 

While some independence may be gained through the ability of the lag/lead structure of the

instrument set to capture differing dynamic impacts across input demand functions, the high

degree of comovement in the response of the inputs to downstream demand may overpower any

such effect.  This difficulty was realized in practice; attempts to estimate the Cobb-Douglas

specification using IV methods yielded unacceptably high standard errors.10  The necessity of

linearly independent relevance is obviously not an issue when using a composite input, so I

estimate (4) using instrumental variables.  As mentioned above, the composite input specification

offers the further advantage of generality.

 Returns to scale are estimated using observations from establishments in the LRD over

the sample period; input coefficients are constrained to be equal for all plant-year observations

within each industry.  Industry groups are the four-digit groupings enumerated above, with one

exception.  I follow the practice of the BLS, which groups the two concrete products industries

(3271 and 3272) together in its own productivity studies because their differentiation is driven

more by product than by technology.  Hence I analyze six distinct industries: pulp mills, paper

mills, paperboard mills, concrete products, ready-mix concrete, and construction equipment.

OLS estimates are obtained under both specifications for use as a benchmark.  I simply

regress logged gross output on an intercept, twelve year dummies for 1981-92, and the input

term(s).  The year dummies allow estimation of *t.

The O-P estimation method is extensively detailed in Olley and Pakes (1996).  Here, I

merely summarize the mechanics of their estimation procedure as followed in this study.  The



11 While my sample period is from 1980-92, I have plant data for 1993.  Hence I am able to determine if an
ASM plant in the sample in 1992 survives to the following year or not.
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first step of the process obtains (l,(e, and (m by regressing gross output (again all values are in

logs) on an intercept; labor, energy, and materials inputs; and a fully-interacted fourth-order

polynomial in capital and investment.  Year dummies are included here as well.  The estimated

value of the capital-investment polynomial is an estimate of idiosyncratic plant productivity and

is saved for use in the third and final stage of the estimation.

The second stage yields probit estimates of plant survival probabilities which are

combined with the first-stage productivity estimates to proxy for expected productivity in the

third stage.  Before this step can be taken, the problem of defining plant survival in the data must

be tackled.  Survival determination is complicated somewhat by the nature of the LRD.  Because

it is comprised of plant observations from the quinquennial Census of Manufactures (CM) and

the Annual Survey of Manufactures (ASM), which is comprised of five-year random-sample

panels which allow for entry and exit, plants in the LRD can reappear and disappear not

necessarily because they halt operations, but only because they are excluded from a particular

ASM panel.  Further, since the probability of selection for the ASM panel is proportional to the

size of the establishment, industries with large numbers of small plants (such as concrete

businesses) have many plant time series with missing years.  This makes survival determination

more complex than merely seeing if there is an observation in the next year.  However, the O-P

algorithm requires lagged variables in its third stage, greatly simplifying the sorting of plants into

survivors and nonsurvivors.  Given that consecutive-year observations are necessary, any plants

not in an ASM panel are immediately removed from consideration.  Furthermore, because my

sample period ends in 1992 (a CM year), I know all of the establishments operating in the nation

that year.  Given these two factors, survival determination becomes a relatively simple matter of

checking whether an observation in a given year is the last for a particular ASM plant.  If a

plant’s final observation is in 1980-81, 1984-87, or 1989-92 (initial or intra-survey years), it is

surely an exit and can be counted as non-survival.11  Any plant-year observation with data in the

following year for the same establishment is a survivor case.  The classification of observations

for 1983 and 1988 (which are the final years of their respective ASM panels) is a bit trickier.  A

final plant observation in 1983 (1988) can indicate exit only between 1983 and 1987 (1988 and



12 Olley and Pakes (1996) found very little change in their technology parameter estimates even when they
entirely excluded the estimated survival probabilities from their procedure.  I am taking not nearly so bold a step
with my assumption; I am only slightly underestimating the probabilities rather than excluding them altogether. 
Hence I expect the simplifying assumption to have no impact on my estimates.
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1992) because a plant may disappear following these years simply as a result of being dropped

from an ASM panel, not necessarily due to a halt in operations.  Determining which exit scenario

is true requires a check for the plant in the next CM year, 1987 (1992).  So for exits in 1983 or

1988, I assume the plant stops production that year.  This of course implies underestimation of

the survival rate for these two years.  However, the number of such plants is relatively small and

is unlikely to significantly affect the estimated returns to scale.12  A probit model of the binary

survival indicator variable run on an interacted fourth-order investment-capital stock polynomial

offers estimates of plant survival probabilities.

The final stage of the Olley-Pakes algorithm estimates the capital parameter.  It takes as

its dependent variable gross output minus the sum of labor, energy, and materials inputs

multiplied by their respective first-stage coefficient estimates.  This value is regressed on a

constant, year dummies, lagged capital stock, and a fourth-order interacted polynomial in the

one-year lags of the plant’s estimated survival probability and productivity.  All variables except

survival probabilities are in logs.  The estimation is nonlinear because the capital coefficient is

present in the productivity estimate, which is part of the fourth-order polynomial.  The estimate

for this coefficient in this final stage is the estimated capital stock technology parameter (k.

I obtain instrumental variables estimates with standard two-stage least squares techniques,

using local construction or FIRE activity measures as instruments.  Each input observation is

instrumented for by the current value, three lags, and one lead of the construction activity

measure.  This lag/lead pattern was chosen based on two considerations.  The first is my prior

belief about the extent of management decision horizons, both forward- and backward-looking. 

The second consideration is Buse’s (1992) demonstration that superfluous instruments in an

instrument set lead to estimation biases.  The resulting lag/lead structure is a reconciliation of

these two factors.  Separate estimations are run for each instrument set.

VI. Results



13 Wald tests using heteroskedasticity-robust standard errors yield qualitatively unchanged results; I do not
report them here.  Further, while plant-level productivity is almost surely has some degree of time-persistence, I do
not report autocorrelation-robust standard errors and Wald statistics for either the first-stage or production function
estimates for two reasons.  First, practical implementation of the Newey-West consistent covariance estimator
requires either a balanced panel of constant-frequency data, or that the window be set to the minimum number of
observations on an individual plant in the panel.  Because my sample contains several plants with only one
observation and others with observations only every five years, implementing the Newey-West procedure with a
window greater than zero (the degenerate case) does not make mathematical sense.  Second, the very facts that the
average panel length is so short compared to the cross-sectional dimension of the sample, and that there are several
time periods between many same-plant observations in which persistence can die out, mitigate the variance-
covariance matrix estimation error caused by autocorrelation.
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Instrument Relevance Tests

Table 2 presents the results of the IV first-stage regressions for the various instrument

sets; these measure the degree of instrument relevance to the endogenous explanatory variables. 

In each case, I regress plant composite input on a constant, year dummies, and the lead, current,

and three lags of the corresponding downstream activity measure.  There are six instrument sets

for each industry: downstream sector employment aggregated at the county, CEA, and EA level,

and real sector payroll at the same three levels of aggregation.  The expectation is that as the

measures become more aggregated, the instruments will tend to become less relevant for the

most local industries—like the concrete products and ready-mix industries—while becoming

more relevant to the inputs of establishments in the construction equipment and paper industries,

which tend to sell output throughout a much larger physical area.  It is more difficult to predict a

priori the relative effectiveness of employment and real payroll as instruments.

The table reports three relevance measures for each instrument set.  The first is the total

R2 of the instrument set, including both the downstream activity terms and year dummies.  The

second is the marginal R2 of the downstream activity measures; that is, the increase in the R2 of

the instrument set when local construction or FIRE sector activity measures are added to the time

dummies.  The third is the F-statistic for the null hypothesis that the five (lead, current, and three

lags) downstream activity coefficients are jointly zero.13  The first two measures offer some

perspective on the economic explanatory ability of the instruments, while the third is a rigorous

statistical test of relevance.  Including year dummies in the instrument set removes the effect of

aggregate changes on plant-level inputs within an industry.  Thus I am isolating in the

downstream activity terms the effect of geographically idiosyncratic construction or FIRE

activity movements on local inputs.  Any predictive ability of the downstream activity measures
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found after taking out aggregate time effects bolsters my contention that local construction or

FIRE activity is a good plant-level instrument for plants in the sample industries, because I am

relying solely on the explanatory power of local downstream activity movements to determine

local input choices.

The most striking feature of the table is the broad statistical relevance of the local

downstream activity measures across nearly every industry and geographic aggregation level. 

This is true not only for the very local concrete plants, as we might expect, but also for the more

widely operating pulp and paper plants.  Even for those plants in the construction equipment

industry, the least local industry in the sample, construction activity is statistically relevant at the

1% level at every geographic aggregation (although only marginally so using county level

instruments).  The evidence on economic relevance is more difficult to interpret because it is a

subjective matter rather than a statistically testable hypothesis, but I find these results largely

encouraging as well.  Considering the substantial heterogeneity present in plant level data and the

large number of plant-year observations, I believe that marginal R2 values of local downstream

activity measures in the 0.015-0.10 range, as found in some of my sample industries, are

acceptable as evidence of economic influence.  Larger values found in SICs 2631 and 3273 are

certainly indicative of such effect, and the total R2 of the instrument sets are also quite

acceptable.  The small marginal explanatory power of county construction activity on

construction equipment plants suggests caution in interpreting any results using this instrument

set, but this caveat is an exception and not the rule among the industries and instrument sets.

These results also accord with intuition regarding the changing relevance of the

downstream activity instruments at different aggregations.  In more locally operating industries,

the instruments' economic and statistical relevance tends to decrease as these measures become

more geographically aggregated.  This is the case in concrete products, ready-mix, and pulp

plants.  This is not surprising, because we would expect that narrower aggregates more closely

measure the demand conditions facing influencing input decisions in plants that sell most of their

output nearby.  Broader aggregations are still relevant, though less so, because of operation

across county lines or comovement in county activity and activity in the corresponding CEA or

EA.  Conversely, relevence largely increases with instrument aggregation in the more broadly

operating paper, paperboard, and construction equipment industries.  This indicates that in these



14 Note that even if Olley-Pakes and IV returns to scale estimates happen to be the same, they still may
have different implications for plant level productivity estimates (which are the estimated residuals from the
production function), because the product of the composite input and its coefficient will likely differ from the sum
of the individual inputs and their respective coefficients.
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industries, establishments respond more to demand shifts across wider operating regions.  This is

also as expected.  It should be noted that even as relevance falls with changes in aggregation, the

local downstream activity instruments are still quite relevant across the board.

There appears to be no appreciable difference between construction or FIRE employment

and real payroll to explain upstream input movements.  The relevance statistics are remarkably

consistent across activity measures.

Returns to Scale Estimates

I report the returns to scale estimates from the various estimation methods and

specifications in Table 3.  The estimates and standard errors for equations (3) and (4) are shown

in each industry's second and third rows.  Both the Olley-Pakes and IV estimates differ

consistently from their (likely biased) OLS counterparts.  The IV estimates differ from the O-P

values by varying degrees from industry to industry.  Unfortunately, it is not possible here to

discern how much of this difference is due to the more generalized IV specification and how

much can results from biases present in the O-P estimates due to the omission of additional

plant-level state variables.  This makes direct empirical comparisons between the two methods'

accuracy difficult.  Instead, I appeal to theory for help interpreting the results.14

The relevance results offer conclusive evidence that local downstream activity is

correlated with input movements in my sample industries.  This indicates that it is very likely that

establishments are considering the state of local demand when making input decisions.  As I have

shown in earlier work, we can expect the O-P method to yield biased estimates if plant

management takes any establishment-specific state variables other than productivity and capital

into account when making input choices.  This bias is likely to manifest itself more the greater

the effect of the additional state variable(s) on inputs, so its expected influence on the O-P

estimates becomes larger as plants within an industry operate in smaller geographic areas and

local demand conditions have greater sway over production.  Hence the O-P estimates for the

concrete industries are particularly suspect, and those in pulp, paper, and construction equipment



15 I am ignoring for now other possibly plant-specific state variables, such as wages and effective capital
costs, which may also affect input decisions in establishments within any of the industries, thereby introducing
additional biases into the Olley-Pakes estimates.
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to a lesser degree (although relevance evidence still indicates the probability of biases in these

industries as well).15  It is this very relevance of local downstream activity to plant-level input

movements, a cause of biases in the O-P method, that makes construction and FIRE activity

measures good instruments for the plants in the sample.  This fact and the strong case for their

exogeneity imply favorable small sample bias and consistency behaviors in my IV estimators. 

Because of this, I am willing to put more credence in the accuracy of the IV returns to scale

estimates, given that certain variable utilization considerations (discussed below) are addressed.

The O-P estimates imply smaller returns to scale than the corresponding OLS estimates in

five of six industries.  Theory is ambiguous regarding the expected direction of this movement;

the change in the input coefficients depends on the extent and direction of covariance between

the inputs and productivity, as well as the additional influence of the omitted state variable bias. 

The small O-P sample size relative to the OLS and IV values stems the requirement that the O-P

algorithm requires lagged values in its third stage.  Hence any single-year observations (such as

those in CM years for plants not included in the corresponding ASM panel) must be dropped. 

There is no simple procedure to calculate a standard error for the returns-to-scale parameter (the

sum of the input coefficients) for the O-P estimates because there one cannot obtain the

covariance of the capital coefficient estimate with those for the flexible inputs, as their estimation

occurs in completely different equations.  Hence no standard errors are shown for these

estimates.

I have reported instrumental variables estimates for each industry and for all six

instrument sets.  I do not eliminate the less relevant instrument sets from estimation after

pretesting; Hall, Rudebusch, and Wilcox (1996) demonstrate doing so can lead to ex-post

inconsistent estimates.  We can, however, use the relevance measures as an ex-post guide to

interpreting the results.

The IV estimates are larger than their OLS counterparts in most cases.  The notable

exception to this is the estimates for the construction equipment industry, especially those using

county level instrument data.  Of course, this is the instrument set which had the least relevance
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to plant-level inputs, so this may explain part of this result.  The direction of the movement from

the OLS to IV coefficients depends upon the covariance between productivity and the composite

input.  If there is a positive correlation, then the OLS estimator will be biased upward and

consistent IV estimates should be smaller.  A negative correlation will cause IV estimates to be

larger than the OLS estimates.  The sign of the productivity-input covariance depends on many

factors.  If the industry is perfectly competitive and technology is factor-neutral, then increases in

productivity will increase the marginal product of all inputs and establishments will purchase

more of them, knowing that any increase in output will be bought up along a perfectly elastic

demand curve.  However, if an industry is not perfectly competitive (so that the firm cannot

freely increase output without changing its price) and technology's influence varies across inputs,

plants may react to productivity increases by changing their mix of inputs.  The resulting change

in the IV composite input parameter estimate from the OLS values is ambiguous; it depends on

factor intensities and substitutablilities.  So differences between the OLS and IV estimates across

industries depend both on industry technologies and output markets.  Further investigation into

the specific sources, while interesting, are beyond the scope of this paper.

The precision of the IV estimates are within quite reasonable bounds, and not unlike

those obtained using other estimation methods with plant data.  They have larger standard errors

than the corresponding OLS estimates, but this is expected since instrumental variables trades

efficiency for consistency.

While a multitude of factors affect the results, there remains very little evidence for

increasing returns in any of the estimates.  In four of the six industries, the IV estimates indicate

near-constant or slightly decreasing returns to scale.  There is some evidence of slightly

increasing returns to scale in the concrete industries, especially in concrete products, where

estimates are statistically and economically greater than one for most instrument sets.  The

lukewarm evidence for increasing returns differs from results obtained in early attempts to

estimate returns to scale with aggregate or industry-level data (e.g., Hall [1990]), which found

strong indications of wide increasing demands.  This evidence was later considerably weakened

by correcting for factor utilization, as done by Burnside et. al (1995), Basu (1996), and others. 

The first set of estimates reported in table 3 does not explicitly correct for changes in factor



16 Of course, it is possible that this is just an artifact of the small size of my industry sample.  I may have
just selected industries that happen to not have a large amount of increasing returns in their technologies.
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utilization yet still indicates only mild increasing returns.16  My hours-based labor input does

account to some degree for labor utilization changes, but there is no adjustment margin in the

utilization intensity of my measured capital input.  So what evidence I do find for increasing in

some industries may only result from the correlation between unmeasured plant-level utilization

(which will be incorporated into the error term) and local downstream activity, because it is

likely that these two variables will be positively correlated.

I explore this possibility by incorporating variable utilization into my specification.  Basu

and Kimball (1997) assert that adding the product of the plant's labor cost share and logged hours

per worker (computed as the reported production hours divided by the number of production

workers) to (4) is a general control for changes in both labor and capital utilization.  They also

show how reweight the composite input to build in Basu's (1996) assumption that materials

cannot be substituted for value added.  I estimate this specification for my industries using the

same instrument sets and present the results in the industries' fourth and fifth rows in table 3.

Adjusting for utilization has little discernable effect on the estimates other than to

increase their standard errors.  The estimates for the industry showing the largest returns to scale

in the initial estimations, concrete products, do fall noticeably and in a statistically significant

manner, as expected.  However, the changes in most of the other estimates (either up or down)

are not statistically significant given the precision of the utilization-corrected estimates.  It

appears that the already weak evidence for increasing returns found in the constant-utilization

specification is further thinned by controlling for input use on the intensive margin.

My returns to scale results have interesting implications regarding previous estimates. 

Given that returns to scale appear roughly constant in my plant data even without explicit capital

utilization controls, it seems possible that the boldly increasing returns found in uncorrected

aggregate and industry data were largely a function of aggregation biases.  Basu and Fernald

(1997) explore such effects sourced in the move from industry to aggregate data.  While not

necessarily a result of the process they describe, my results bolster their contention that data

aggregation hides reallocative effects which are important to understanding plant-level processes.

In sum, the relevance tests are quite encouraging with regard to the flexibility of



17 Local construction activity data alone affords a significant number of potential industries to study. 
Because construction is such a significant part of GDP, establishments in many industries produce a substantial
percentage (if not a majority) of their output to satisfy end uses in construction, and few compose a significant
portion of total end costs.  Moreover, many of these intermediate industries operate largely in their own local area. 
Thus local construction activity data are suitable for many industries beyond just the industries in this study.  Just a
few examples in manufacturing include the wood kitchen cabinets (SIC 2434), brick and structural clay tile (SIC
3251), and the fabricated structural metal (SIC 3441) industries.
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instrumental variables obtained by recognizing segmented markets.  This widens the scope of

potential applications of the market segmentation method.  Further, this study shows that

applying such instruments toward investigation of interesting empirical questions is entirely

feasible and can offer what are for the most part very reasonable results.

VII. Conclusions

I have argued for a new emphasis on instrument identification when working with

endogenously determined plant level data.  To present, many studies facing such data have either

ignored the problem or made elaborate attempts to circumvent it because of a perceived difficulty

in finding suitable instruments.  In this paper, I outline an intuitive strategy for identifying

instruments which are likely to be exogenous and relevant across plants.  I go further by offering

specific examples and employing them in a prototype empirical study.  I find that local

downstream demand measures are relevant across plants within an industry, at least for the

industries in this study.  Surprisingly, this is the case even among plants in industries which at

first glance seem to operate nationally.  This result is quite encouraging for its implications about

the number of industries to which such instruments are applicable.17

Further, I wish to stress that instruments identified by exploiting market heterogeneity

have additional applications not only across the number of industries, but also across the types of

empirical questions which they can be used to address.  These go well beyond just the simple

returns to scale estimation in this study.  Such instruments lend themselves well to analyses of a

number of economic behaviors that require measures of exogenous demand fluctuations.

Empirical economists often wrestle with endogeneity problems.  Having strategies for

dealing with these difficulties in microdata, such as the market segmentation principle of

instrument identification, will hopefully encourage work that was formerly not possible and

allow improvement of previous studies.
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Table 1: Percentage (by Weight) of Total Output Shipped by Distance

Industry SIC 0-99 miles 100-199 miles

Pulp Mills 2611 32.8 13.1

Paper Mills 2621 15.7 10.8

Paperboard Mills 2631 21.0 11.3

Concrete Block and Brick 3271 94.2 5.2

Concrete Products, Ex. Block and Brick 3272 98.3 1.2

Ready-Mix Concrete 3273 94.4 1.7

Construction Equipment 3531 14.0 8.7

Source: 1977 Commodity Transportation Survey, Bureau of the Census



Table 2: Instrument Relevance Tests

Instrument Set
Industry SIC Statistic County/Emp County/Pay CEA/Emp CEA/Pay EA/Emp EA/Pay

Pulp Mills 2611 N 392 392 422 422 422 422
Total R2 0.284 0.287 0.136 0.137 0.17 0.166

Marginal R2 0.192 0.195 0.04 0.041 0.074 0.07

F 20.09* 20.5* 3.798* 3.836* 7.254* 6.838*
Paper Mills 2621 N 2887 2887 3110 3110 3110 3110

Total R2 0.114 0.117 0.116 0.123 0.151 0.151

Marginal R2 0.073 0.076 0.077 0.084 0.112 0.112

F 47.28* 48.84* 54.20* 59.86* 82.05* 81.98*
Paperboard Mills 2631 N 2081 2081 2219 2219 2219 2219

Total R2 0.163 0.164 0.14 0.146 0.191 0.191

Marginal R2 0.137 0.138 0.116 0.122 0.167 0.167

F 67.62* 68.02* 59.21* 62.88* 90.61* 90.31*
Concrete Products 3271&2 N 15,363 15,363 15,892 15,892 15,892 15,892

Total R2 0.213 0.212 0.2 0.199 0.201 0.199

Marginal R2 0.038 0.037 0.013 0.012 0.014 0.012

F 148.4* 143.0* 50.25* 46.54* 57.06* 49.99*
Ready-Mix Concrete 3273 N 20,988 20,988 21,787 21,787 21,787 21,787

Total R2 0.306 0.299 0.171 0.168 0.172 0.168

Marginal R2 0.197 0.19 0.051 0.048 0.052 0.048

F 1191* 1136* 267.3* 254* 276.5* 254.5*
Construction Equipment 3531 N 4573 4573 4768 4768 4768 4768

Total R2 0.277 0.277 0.288 0.286 0.296 0.293

Marginal R2 0.002 0.002 0.009 0.007 0.018 0.015

F 3.6* 2.709 12.53* 10.12* 23.45* 19.00*

Notes:  This table presents results from regressions of plant inputs on the downstream activity instruments for the industries
in the study.  Statistics presented include the sample size, "N"; the total R2 of the instrument set (both downstream measures and year dummies),
"Total R2"; the increase in the R2 when the downstream activity terms are added to the set, "Marginal R2"; and the F-statistic for joint significance
of the five downstream instrument terms, "F".  Results are shown for instrument sets comprised of one of two activity measures (employment or
payroll) geographically aggregated at one of three levels (county, CEA, or EA).  See text for details.
* Denotes Significance at the 1% Level



Table 3: Returns to Scale Estimates

Estimation Method
OLS OLS IV IV IV IV IV IV

Industry Utilization Separate Olley-Pakes Composite County/Emp County/Pay CEA/Emp CEA/Pay EA/Emp EA/Pay
Pulp Mills N 422 369 422 392 392 422 422 422 422

Constant 1.007 0.909 0.904 1.081 1.108 1.126 1.177 1.146 1.192
(*) (*) (0.003) (0.016) (0.017) (0.029) (0.032) (0.028) (0.031)

Variable 0.929 0.979 0.907 1.006 0.965 1.006 0.942
(0.003) (0.044) (0.082) (0.044) (0.061) (0.047) (0.071)

Paper Mills N 3110 2741 3110 2887 2887 3110 3110 3110 3110
Constant 0.998 0.959 0.927 0.991 1.004 1.007 1.041 1.042 1.073

(*) (*) (0.002) (0.005) (0.005) (0.010) (0.011) (0.010) (0.011)
Variable 0.943 1.006 0.977 1.000 1.028 1.028 1.050

(0.002) (0.019) (0.050) (0.015) (0.010) (0.013) (0.009)
Paperboard Mills N 2219 1923 2219 2081 2081 2219 2219 2219 2219

Constant 1.011 0.984 0.948 0.672 0.551 0.871 0.835 0.941 0.916
(*) (*) (0.004) (0.093) (0.133) (0.038) (0.043) (0.027) (0.030)

Variable 0.970 0.785 0.699 0.866 0.857 0.950 0.951
(0.003) (0.122) (0.182) (0.048) (0.056) (0.040) (0.057)

Concrete Products N 15892 3621 15892 15363 15363 15892 15892 15892 15892
Constant 1.017 0.900 0.885 0.931 0.947 0.828 0.835 0.959 0.953

(*) (*) (0.018) (0.039) (0.039) (0.084) (0.083) (0.062) (0.064)
Variable 0.991 1.03 0.964 0.97 0.904 1.019 1.073

(0.013) (0.091) (0.095) (0.088) (0.184) (0.180) (0.058)
Ready-Mix N 21787 4471 21787 20988 20988 21787 21787 21787 21787

Constant 1.017 1.076 0.917 0.905 0.899 0.950 0.947 0.943 0.943
(*) (*) (0.005) (0.020) (0.020) (0.019) (0.018) (0.016) (0.016)

Variable 1.001 1.401 0.837 0.979 0.964 0.908 0.982
(0.005) (0.410) (0.110) (0.040) (0.037) (0.137) (0.037)

Construction N 4768 2183 4768 4573 4573 4768 4768 4768 4768
Equipment Constant 1.006 0.889 0.853 0.884 0.881 0.925 0.919 0.904 0.903

(*) (*) (0.005) (0.013) (0.013) (0.014) (0.014) (0.012) (0.012)
Variable 0.941 0.847 0.963 1.089 1.061 0.978 0.998

(0.005) (0.111) (0.038) (0.193) (0.057) (0.035) (0.039)

Notes:  This table presents returns to scale estimates and their standard deviations from the various estimation methods.  These include OLS with separate
inputs, Olley-Pakes, OLS with a composite input, and IV with several instrument sets.  No standard deviation could be computed for the Olley-Pakes
estimates for reasons discussed in the text, so no standard deviation is shown for its OLS counterpart specification.  The IV instrument sets differ by
downstream activity measure (employment or payroll) and level of geographic aggregation (county, CEA, EA).  IV estimates are presented for two
specifications: one assuming constant input utilization, and one controlling for variable utilization.  See text for details.


